
About Property
Description
The About property displays the about box for this component. The about box contains version and
copyright information. It is only available at design time.

Version 1.0 HelpCloud Component Help, © 1994, 1995 SHORELINE SOFTWARE
VisualPROS is a trademark of SHORELINE SOFTWARE

About SHORELINE SOFTWARE

About SHORELINE SOFTWARE
SHORELINE is a developer haven created to provide excellent products and support. Our developers
have been creating MS-Windows based applications since 1985 and real life client server applications
since 1987. We are bringing our real world experience into the design and development of unique
controls. We are a TRANSDOMINION Company and are part of a software family including the PRISM
Client Server Group. Our family of companies offer many services that include:
· Component development
· Application development (off-site)
· Multi-media design and development
· Install development
· Technology transfer
· Training

How to purchase any of our products:
You can order directly from SHORELINE at 800-261-9198 or contact your favorite dealer.SHORELINE
accepts VISA, Mastercard or the Discover card. Dealer prices may vary.

How to contact SHORELINE SOFTWARE about our products or service:
We welcome all ideas, comments and suggestions. Please let us know what you think of our pricing and
support policies. If you have a unique story about our products please share it with us; our developers
love to hear how our products are being used!

CompuServe: 70541, 2436
US Mail: 35-31 Talcottville Road, #123

Vernon, CT 06066-4030
Phone: 800-261-9198
Fax: 203-870-5727
Contact: Glenn A. Field

© Copyright 1994, 1995 SHORELINE SOFTWARE

A division of TRANSDOMINION Corporation

VisualPROS is a trademark of SHORELINE SOFTWARE

Prices and versions are subject to change without notice. Products and company names are generally
trademarks or registered trademarks of their respective companies. We are not responsible for
typographical errors.

SHORELINE is always looking for additional talent. We even work with several remote developers for
our products. If you feel you have what it takes to be part of SHORELINE send us your cv or resume.
Where to send your resume

Alignment Property
See Also
Declaration
property Alignment: TTextAlignment;

Description
The Alignment property specifies how text is aligned within the component.

These are the possible values:

Value Meaning
taLeft Align text to the left side of the control
taCenter Center text horizontally in the control
taRight Align text to the right side of the control

Bitmap Property
See Also Example
Declaration
property Bitmaps : TBitMap;

Description
The Bitmaps property for HelpCloud contains a set of four TBitMap objects which are used to define the
background for the four possible helpcloud locations. The Corner property designates which of these
four bitmaps is displayed at any given time.

CaptionWidth
See Also
Declaration
property CaptionWidth : Integer;

Description
The CaptionWidth property sets the width of the help cloud caption in pixels. When you increase the
CaptionWidth property value, the displayed Text property of the control becomes wider. If you decrease
the value, the displayed Text property of the control becomes narrower.

Color
See Also
These are the possible values of Color:

Value Meaning
clBlack Black
clMaroon Maroon
clGreen Green
clOlive Olive green
clNavy Navy blue
clPurple Purple
clTeal Teal
clGray Gray
clSilver Silver
clRed Red
clLime Lime green
clBlue Blue
clFuchsia Fuchsia
clAqua Aqua
clWhite White
clBackground Current color of your Windows

background
clActiveCaption Current color of the title bar of the

active window
clInactiveCaption Current color of the title bar of inactive

windows
clMenu Current background color of menus
clWindow Current background color of windows
clWindowFrame Current color of window frames
clMenuText Current color of text on menus
clWindowText Current color of text in windows
clCaptionText Current color of the text on the title

bar of the active window
clActiveBorder Current border color of the active

window
clInactiveBorder Current border color of inactive

windows
clAppWorkSpace Current color of the application

workspace
clHighlight Current background color of selected

text
clHightlightText Current color of selected text
clBtnFace Current color of a button face
clBtnShadow Current color of a shadow cast by a

button
clGrayText Current color of text that is dimmed
clBtnText Current color of text on a button
clInactiveCaptionText Current color of the text on the title

bar of an inactive window
clBtnHighlight Current color of the highlighting on a

button

The second half of the colors listed here are Windows system colors. The color that appears depends on
the color scheme users are using for Windows. Users can change these colors using the Control Panel in

Program Manager. The actual color that appears will vary from system to system. For example, the color
fuchsia may appear more blue on one system than another.

When you use the Color dialog box to select a color, you are assigning a new color value to the dialog
box's Color property. You can then use the value within the Color property, and assign it to the Color
property of another control.

Corner
See Also
Declaration
property Corner : THelpCloudCorner;

Description
The Corner property defines at which corner location the help cloud appears at runtime.

Create Method
See Also
NOTE: For more information regarding Create methods please refer to the Delphi help.

Declaration
constructor Create;

Description
The Create method constructs a new object instance. Create returns an instance of the type being
created, allocated on the global heap. As with all constructors, Create calls the NewInstance method to
allocate the memory for the instance, and the InitInstance method to initialize the allocated memory
before executing its own code.

By default, Create allocates the number of bytes returned by the InstanceSize method, and initializes the
allocated memory to zeros.

When declaring new component types, always add the override directive if your new component declares
a Create method. The Create method of TComponent is virtual, so to ensure that Delphi calls the correct
constructor when a user drops your component on a form, you must override the Create
method.

Note:
When you override the Create constructor in a descendant object type, you should call the inherited
Create to complete the initialization of inherited fields and properties. Always use the inherited keyword
when calling the inherited Create, rather than specifying the ancestor type, as calling
AncestorType.Create actually constructs an additional instance of that ancestor
type.

Destroy Method
See Also
NOTE: For more information regarding Destroy methods please refer to the Delphi help.

Declaration
destructor Destroy;

Description
The Destroy method destroys the object, component, or control and releases the memory allocated to it.

You seldom need to call Destroy. Objects designed with Delphi create and destroy themselves as needed,
so you don't have to worry about it. If you construct an object by calling the Create method, you should
call Free to release memory and dispose of the object.

Example for Alignment property
Example
This example moves the text of the control to the right of the HelpCloud1, during the creation of TForm1:

To see the Alignment property work during design time try the following:
1) Save all of your current work
2) Create a new project

2a) Select New Project from the Delphi File menu
3) Place the THelpCloud on the form

3a) Click on the VisualPROS-1 tab found in VCL tabs
3b) Select the HelpCloud icon and double click

4) Place the TEdit on the form
4a) Click on the STANDARD tab found in VCL tabs
4b) Select the Edit icon and double click

5) Change the HelpCloud Alignment property
5a) Click on Object Inspector window
5b) Select HelpCloud1 control from the component list
5c) Select the drop down list for the Alignment property
5d) Select taLeft from the list
5e) HelpCloud1 should be at the bottom of the form expanded to the width of the form

6) Change the Edit1 property to see the actual alignment change
6a) Click on Object Inspector window
6b) Select Edit1 control from the component list
6c) Select the Hint property and add the text you want to display in the HelpCloud
6d) Select the ShowHint property and select True from the dropdown list
6e) HelpCloud1 should be at the bottom of the form expanded to the width of the form

To see the Align property work during program execution try the following:
1) Save all of your current work
2) Create a new project

2a) Select New Project from the Delphi File menu
3) Place the THelpCloud on the form

3a) Click on the VisualPROS-1 tab found in VCL tabs
3b) Select the HelpCloud icon and double click

4) Create the actual code for the alignment change
4a) Double click on TForm1 in a blank area
4b) Type in the following line of code in the edit window after the begin.

HelpCloud1.Align := alBottom
Your code should look like the following

procedure TForm1.FormCreate(Sender: TObject);
begin

HelpCloud1.Align := alBottom
end;
end.

5) Try the application and see the results
5a) Press F9 and watch your new form

Example for Bitmaps Property
Example
This example assigns a bitmap for the background of a HelpCloud component named HelpCloud1. This
example will use the arcade.bmp found in your windows directory:

To assign the Bitmaps property during design time do the following:
1) Save all of your current work
2) Create a new project

2a) Select New Project from the Delphi File menu
3) Place a HelpCloud instance on the form

3a) Click on the VisualPROS-1 tab found in VCL tabs
3b) Select the HelpCloud icon and click on the form

4) Change the Bitmaps property
4a) Click on the Object Inspector window
4b) Double click the Bitmaps property
4c) Double click on one of the four indented properties (LowerLeft through UpperRight)
4d) Click Load from the Picture Editor dialog
4e) In the Load Picture dialog navigate to your MS-Windows subdirectory
4f) Double click the arcade.bmp found in the file list
4g) Click OK on the Picture Editor dialog
4h) Set the Corner property to indicate the above selected bitmap corner location

5) Try the application and see the results
5a) Press F9 and point your mouse on hint enabled components.

To assign the Bitmaps property during program execution do the following:
1) Save all of your current work
2) Create a new project

2a) Select New Project from the Delphi File menu.
2b) Add several buttons and/or other hint enabled components to the form.
2c) Add text to the hint property of each component.
2d) Set the ShowHint Property of each component to true.

3) Place a HelpCloud instance on the form
3a) Click on the VisualPROS-1 tab found in VCL tabs
3b) Select the HelpCloud icon and click on the form

4) Create the actual code for the bitmap change
4a) Double click on a blank area of the form
4b) Type the following lines of code into the FormCreate procedure
NOTE: Substitute your MS-Windows path if it is different than C:\WINDOWS\
Form1.Helpcloud1.BitMaps.UpperRight.LoadFromFile('c:\windows\arcade.bmp');
Form1.HelpCloud1.Corner :=UpperRight;
Your code should look like the following;
procedure TForm1.FormCreate(Sender: TObject);
begin

Form1.Helpcloud1.BitMaps.UpperRight.LoadFromFile('c:\windows\arcade.bmp');
Form1.HelpCloud1.Corner :=UpperRight;

end;
end.

5) Try the application and see the results
5a) Press F9 and point your mouse on hint enabled components.

If you receive an error check your pathname of the bitmap file.

Font Property
See Also
Declaration
property Font: TFont;

Description
The Font property is a font object that controls the attributes of text written on or in the component, or
sent to the printer. To modify a font, change the value of the Color, Name, Size or Style properties of the
font object.

Key Property
The most significant properties: Generally having an effect on the behavior of the component. You
probably want to learn these properties first.

Methods
Class methods are procedures and functions that operate on a class, instead of an instance of the class.
The implementation of the class method must not depend on the run-time values of any object fields.

To declare a class method, you put the reserved word class in front of the procedure, or function keyword,
that starts the definition.

In the defining declaration of a class method, the identifier Self represents the class for which the method
was activated. The type of Self in a class method is class of ClassType, where ClassType is the class
type for which the method is implemented. Since Self does not represent an object reference in a class
method, it is not possible to use Self to access fields, properties and normal methods. It is however
possible to call constructors and other class methods through Self.

A class method can be invoked through a class reference or an object reference. When invoked through
an object reference, the class of the given object reference is passed as the Self parameter.

Name Property
See Also
Declaration
property Name: THelpCloud;

Description
The Name property contains the name of the component as referenced by other components. By default,
Delphi assigns sequential names based on the type of the component, such as 'HelpCloud1', 'HelpCloud2'
and so on. You may change these to suit your needs.

Note: Change component names only at design time.

Overriding Methods
NOTE: For more information regarding overriding methods please refer to the Delphi help.

Overriding a method means extending or refining it, rather than replacing it. That is, a descendant object
type can redeclare and reimplement any of the methods declared in its ancestors. One cannot override
static methods, because declaring a static method with the same name as an inherited static method
replaces the inherited method completely.

To override a method in a descendant object type, add the directive override to the end of the method
declaration.

Using override will cause a compile-time error if:
The method does not exist in the ancestor object
The ancestor's method of that name is static
The declarations are not otherwise identical (names and types of parameters, procedure vs.

function, and so on)

Properties
About
Alignment
Bitmaps
CaptionWidth
Color
Corner
Font
Name
Style
Tag

Read Only
Properties with this symbol are read only and cannot be changed. Usually provided so that application
code can inspect certain characteristics of a component.

Runtime Only
Properties with this symbol are only available at runtime. In design mode these properties will not be
shown in the object inspector. Most runtime only properties are read only as well.

See Also
About
Alignment
Bitmaps
CaptionWidth
Color
Corner
Font
Name
Style
Tag

Style Property
See Also
Declaration
property Style:

Description
The value of the Style property determines the appearance of the help cloud. These are the possible
values:

Value Meaning

standard The hint appears connected
to the component by a solid
cloud.

bubble The hint appears connected
to the component by a
"bubble" cloud.

TTextAlignment Type
Declaration
TTextAlignment = (taLeft, taRight, taCenter);

Description
TAlignment is the type of the alignment property.

TColor Type
Declaration
type
 TColor = -(COLOR_ENDCOLORS + 1)..$02FFFFFF;

Description
The TColor type is used to specify the color of an object.

The Graphics unit contains definitions of useful constants for TColor. These constants map either directly
to the closest matching color in the system palette (for example, clBlue maps to blue), or to the
corresponding system screen element color, defined in the Color section of the Windows Control panel
(for example, clBtnFace maps to the system color for button faces).

The constants that map to the closest matching system colors are: clAqua, clBlack, clBlue, clDkGray,
clFuchsia, clGray, clGreen, clLime, clLtGray, clMaroon, clNavy, clOlive, clPurple, clRed, clSilver, clTeal,
clWhite and clYellow.

The constants that map to the system screen element colors are: clActiveBorder, clActiveCaption,
clAppWorkSpace, clBackground, clBtnFace, clBtnHighlight, clBtnShadow, clBtnText, clCaptionText,
clGrayText, clHighlight, clHighlightText, clInactiveBorder, clInactiveCaption, clInactiveCaptionText, clMenu,
clMenuText, clScrollBar, clWindow, clWindowFrame and clWindowText.

If you specify TColor as a specific 4-byte hexadecimal number instead of using the constants defined in
the graphics unit, the low three bytes represent RGB color intensities for blue, green, and red,
respectively. The value $00FF0000 represents full-intensity, pure blue, $0000FF00 is pure green, and
$000000FF is pure red. $00000000 is black and $00FFFFFF is white.

If the highest-order byte is zero ($00), then the color obtained is the closest matching color in the system
palette. If the highest-order byte is one ($01), the color obtained is the closest matching color in the
currently realized palette. If the highest-order byte is two ($02), the value is matched with the nearest
color in the logical palette of the current device context.

To work with logical palettes, you must select the palette with the Windows API function SelectPalette. To
realize a palette, you must use the Windows API function RealizePalette.

TFont Object
NOTE: This information provided for reference only. For more information refer to the Delphi
help.

Description
A TFont object defines the appearance of text. TFont encapsulates a Windows HFONT.

A TFont object defines a set of characters by specifying their height, font family (typeface), name and so
on. The height is specified by the Height property; The typeface is specified by the Name property; The
size in points is specified by the Size property; The color is specified by the Color property; The attributes
of the font (bold, italic, and so on) are specified by the Style property.

When a font is modified, an OnChange event occurs.

THelpCloudCorner
Declaration
THelpCloudCorner = (LowerLeft, LowerRight, UpperLeft, UpperRight);

Description
THelpCloudCorner is the data type for the Corner property of the HelpCloud Component.

THelpCloud Component
Properties Methods
Version 1.0 HelpCloud Component Help, © 1994, 1995 SHORELINE SOFTWARE
VisualPROS is a trademark of SHORELINE SOFTWARE
SHORELINE SOFTWARE 35-31 Talcottville Rd. #123, Vernon, CT 06066-4030
Technical Support: Phone: (203) 870-5707 24-Hour Fax: (203) 870-5727
CompuServe 70541,2436

Description
HelpCloud provides an enhanced form of Delphi hint functionality with a stylized appearance. HelpCloud
also allows manipulation of shape plus characteristics of help view.

Feature List
User Defined background bitmapping.
Four possible locations of the help cloud
Two possible styles of help cloud.

Key Properties
Name
BitMaps
Corner
Style
Font

About SHORELINE SOFTWARE

Tag Property
See Also
Declaration
property Tag: Longint;

Description
The Tag property is available to store an integer value as part of a component. While the Tag property
has no meaning to Delphi, your application can use the property to store a value for its special needs.

Where to send your resume
Please send your resume and other CV related materials to:

SHORELINE SOFTWARE
35-31 Talcottville Road, #123
Vernon, CT 06066-4030

ATTN: Glenn A. Field

Phone: 800-261-9198
Fax: 203-870-5727

We will contact you after receiving your resume.

